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Abstract

This paper derives an analytical expression of the shear coefficient in the Mindlin plate equation for a plate of infinite

spatial extent subjected to forced excitation at definite frequency and wavenumber. The displacement transfer function

derived from the Mindlin plate equation is set equal to the displacement transfer function derived from the Rayleigh–Lamb

thick plate equation, and the result is a closed-form expression of the shear coefficient. A numerical example is included to

illustrate the variation of the shear coefficient with respect to the system parameters. It is shown that the shear coefficient is

extremely dependent on wavenumber and only slightly dependent on frequency. Shear coefficients derived in other work

for free vibration are compared favorably to the values calculated by this new method at the wavenumber and frequency of

the flexural wave response of the plate.

Published by Elsevier Ltd.
1. Introduction

The Mindlin plate equation [1] is a modification of classical thin plate theory that includes rotary inertia and
shear effects so that it is applicable to thick plates. Incorporated in the Mindlin plate equation is a shear
coefficient, which is an adjustment parameter that is included to compensate for the stress distribution across
the sectional area of the object. Mindlin derived two equations for the value of the shear coefficient in his
original paper [1], one dependent on the value of Poisson’s ratio and the second a constant. The problem of
determining the shear coefficient in a Mindlin plate equation was addressed by Hutchinson [2] based on
matching a mode of the Mindlin plate theory to the exact Rayleigh–Lamb frequency equation for the flexural
wave response at long wavelengths. This expression is dependent only on Poisson’s ratio. Later, Stephen [3] re-
examined this solution, and called this the ‘‘best shear coefficient.’’ Over the years, it has become evident in
plate theory that the shear coefficient is theoretically dependent on more than Poisson’s ratio. The above
theories are all based on excitation of the flexural wave in a structure, and the corresponding shear coefficients
are determined at the specific wavenumber and frequency of the flexural wave. They do not account for the
shear coefficient as a function of all wavenumbers and frequencies, which is a response and excitation
condition that exists in structures that are loaded by turbulent boundary layers or acoustical forces.
ee front matter Published by Elsevier Ltd.
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This paper derives an analytical expression of the shear coefficient in the Mindlin plate equation subjected
to plane wave excitation at any wavenumber and frequency for a plate of infinite extent. This is accomplished
by computing the displacement field of the plate using the Mindlin plate equation and the Rayleigh–Lamb
plate equation, and then setting them equal to each other. Because the shear coefficient is explicit in the
Mindlin plate equation and implicit in the Rayleigh–Lamb plate equation, it can be solved for as a function of
wavenumber, frequency and plate parameters. A numerical example is included to depict the dependence of
the shear coefficient on wavenumber and frequency. It is shown that the shear coefficient is only slightly
dependent on frequency and extremely dependent on wavenumber of excitation. Comparisons of previous
analytical expressions are also included in the numerical example to illustrate how other theories compare to
the one derived here.

2. System models and shear coefficient

Two system models are developed: one contains the shear coefficient explicitly and the other contains the
shear coefficient implicitly. The first system model is that of a Mindlin plate whose governing equation is [1,4]

r2 �
r
k2m

q2

qt2

� �
Dr2 �

rh3

12

q2

qt2

� �
uðx; tÞ þ rh

q2uðx; tÞ
qt2

¼ 1�
Dr2

k2mh
þ

rh2

12k2m
q2

qt2

� �
f ðx; tÞ, (1)

where k2 is the shear coefficient, uðx; tÞ is the displacement of the plate in the z-direction, f ðx; tÞ is the force
distribution on the plate, r is the density, m is the shear modulus, h is the thickness, x is the spatial location, t is
the time, r is the spatial gradient operator and D is equal to

D ¼
Eh3

12ð1� n2Þ
, (2)

where E is Young’s modulus and n is Poisson’s ratio. It is noted that some authors use k as the shear coefficient
rather than k2. The system is modeled as infinitely long with a continuous forcing function varying in time and
space; thus, the displacement and forcing function terms are written as

uðx; tÞ ¼ Uðk;oÞexpðiotÞexpðikxÞ (3)

and

f ðx; tÞ ¼ F ðk;oÞexpðiotÞexpðikxÞ, (4)

where o is angular frequency, k is wavenumber with respect to the x-axis and i is the square root of �1.
Solving the transfer function response of displacement divided by input force yields
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where

a ¼ �12mh; b ¼ �12Dk2
þ rh3o2, (7,8)
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� 12mrh2o2 (9)
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þ r2h4o4. (10)

The second model is derived from the equations of motion [5] of a solid medium, governed by

mr2uþ ðlþ mÞrrdu ¼ r
q2u
qt2

, (11)



ARTICLE IN PRESS
A.J. Hull / Journal of Sound and Vibration 294 (2006) 125–130 127
where l and m are the Lamé constants, � denotes a vector dot product and u is the Cartesian coordinate
displacement vector of the plate. Assuming harmonic response in space and time, Eq. (11) can be manipulated;
the resulting expression [6] is the displacement in the z-direction at the mid-plane of the plate divided by the
incident normal force and is written as
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F ðk;oÞ

¼
Fðk;�h=2;oÞ

mDðk;oÞ
, (12)
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In Eqs. (13) and (14), a is the modified wavenumber associated with the dilatational wave and is expressed
as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

d � k2
q

, (15)

where kd is the dilatational wavenumber equal to o=cd , where cd is the dilatational wave speed; b is the
modified wavenumber associated with the shear wave and is expressed as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
q

, (16)

where ks is the shear wavenumber equal to o=cs, where cs is the shear wave speed. The relationships between
the wave speeds (cd and cs) and the plate’s Lamé constants (l and m) are determined by

cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
(17)

and
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m
r

r
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The analytical expression for the shear coefficient is now determined by equating Eqs. (6) and (12) and
solving for k2, which results in

k2ðk;oÞ ¼
dF� bmD
amD� cF

. (19)

When the system response is at the flexural resonance, the denominator of Eq. (12) is zero and the
corresponding shear coefficient calculated from Eq. (19) is

k2f ðk;oÞ ¼
�d

c
¼

12Dro2k2
� r2h3o4

12Dmk4
� mrh3o2k2

� 12mrho2
. (20)

It is noted that this shear coefficient is not only a function of wavenumber and frequency but also of Young’s
modulus, shear modulus, Poisson’s ratio and the thickness and density of the plate.

3. A numerical example

A numerical example is now analyzed to investigate the behavior of the shear coefficient calculated using
Eqs. (19) and (20). The parameters of the plate are listed in Table 1. Using these parameters, the calculated
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Table 1

Plate parameters used for numerical example

Thickness, h 0.01m

Young’s modulus, E 7.0e8N/m2

Shear modulus, m 2.5e8N/m2

Poisson’s ratio, n 0.4 (dimensionless)

Density, r 1200 kg/m3
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Fig. 1. Shear coefficient versus wavenumber and frequency for the numerical example.
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plate wave speed cp is 833m/s and the shear wave speed cs is 456m/s. Other authors [2,7] have considered the
(frequency) range of accuracy of the Mindlin plate equations, so no attempt is made in this paper to
investigate this issue. Achenbach [7] uses the equation

oo1:2p
cs

h
, (21)

which he states ‘‘yield(s) very good results’’ while Hutchinson [2] uses the equation

oo3
cs

h
, (22)

which he calls ‘‘a good practical limit.’’ Using these two formulas applied to the parameters gives an upper
frequency range of 27,400 and 21,800Hz, respectively, for this problem. Fig. 1 is a plot of the shear coefficient
versus wavenumber and frequency and was determined using Eq. (19). This figure illustrates the dependency
of the shear coefficient on wavenumber and frequency. The parabolic line on the plot is the flexural
wavenumber location calculated by finding the maximum value of the displacement in wavenumber at each
analysis frequency. The weak line originating at the origin and ending at f ¼ 10; 000Hz and k ¼ 75:4 rad=m is
the plate wave response of the Rayleigh–Lamb model. This plate wave wavenumber can be predicted by

kp ¼
o
cp

, (23)

where

cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� n2Þ

s
. (24)

The Rayleigh–Lamb equation of motion contains the plate wave dynamics while the Mindlin plate equation
does not; thus, there is a modeling mismatch around the plate wavenumber that produces a singularity in the
analysis. The result of this model mismatch is that the theoretical shear coefficient factor will not be accurate
in the region around the plate wavenumber. Fig. 2 is a cut of Fig. 1 in wavenumber at constant frequencies of
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Fig. 2. Shear coefficient versus wavenumber for the numerical example. Plate wavenumber (&) and flexural wavenumber (J) are denoted

on the plot. (a) 1000Hz, (b) 2000Hz, (c) 3000Hz, (d) 4000Hz and (e) 5000Hz.
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Fig. 3. Shear coefficient versus frequency at flexural wave response for the numerical example. Hutchinson estimate (*), Mindlin estimate

one (� ) and Mindlin estimate two (+) are denoted on the plot.
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1000, 2000, 3000, 4000 and 5000Hz, which illustrates the dependence of the shear coefficient on wavenumber
at five different frequencies. The square marker (&) is the plate wavenumber and the round marker (J) is the
flexural wavenumber. Fig. 3 is a cut of Fig. 1 in frequency at the flexural wavenumber. The star symbol (*) is
the shear coefficient derived by Hutchinson [2] (and later Stephen [3]) and is equal to

k2 ¼
5

6� n
, (25)
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while the� symbol is one shear coefficient derived by Mindlin [1] and is

k2 ¼
p2

12
(26)

and the plus (+) symbol is a second shear coefficient derived by Mindlin [1] and is equal to the root of

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� dk2Þð1� k2Þ

p
� ð2� k2Þ2 ¼ 0, (27)

where

d ¼
1� 2n
2ð1� nÞ

. (28)

It is clear that these estimates are close to the solution derived in Eq. (20) for wave propagation at (or near) the
flexural wave propagation wavenumber and frequency. They do not account for wave propagation at other
frequencies and wavenumbers.

The most interesting aspect of this analysis is that the shear coefficient is highly dependent on the
wavenumber. This dependency was previously unknown; however, the fact that the dynamics of the system are
dependent on the wavenumber of the excitation is not a new concept. In this type of analysis, low wavenumber
excitation generally results in a structural response that is composed of primarily dilatational waves that
contain the majority of the energy. Shear effects are secondary until the wavenumber of the excitation becomes
moderate. Previous work has typically consisted of modeling the flexural wave in a plate, calculating the
response, and then back-calculating the shear coefficient. It does not consist of structural excitation at all
wavenumbers and then determining the shear coefficient.

4. Conclusions

The theoretical shear coefficient for a Mindlin plate has been derived as an analytical expression based on
forced vibration equations of motion. It is shown that this term is dependent on wavenumber, frequency,
Young’s modulus, shear modulus, Poisson’s ratio, density and thickness of the plate. Numerical simulations
showed that the shear coefficient is extremely dependent on wavenumber but only slightly dependent on
frequency. Previous shear coefficient expressions are close to the analytical expression derived here at the
flexural wave frequency and wavenumber of the plate.
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